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A fixed set, that is the set of all lattice metrics corresponding to the arithmetic

holohedry of a primitive lattice, is a natural tool for keeping track of

the symmetry changes that may occur in a deformable lattice [Ericksen

(1979). Arch. Rat. Mech. Anal. 72, 1–13; Michel (1995). Symmetry and Structural

Properties of Condensed Matter, edited by T. Lulek, W. Florek & S. Walcerz.

Singapore: Academic Press; Pitteri & Zanzotto (1996). Acta Cryst. A52, 830–

838; and references quoted therein]. For practical applications it is desirable to

limit the infinite number of arithmetic holohedries, and simplify their

classification and construction of the fixed sets. A space of 480 matrices with

cyclic consecutive powers, determinant 1, elements from {0, �1} and geometric

description were analyzed and offered as the framework for dealing with the

symmetry of reduced lattices. This matrix space covers all arithmetic holohedries

of primitive lattice descriptions related to the three shortest lattice translations

in direct or reciprocal spaces, and corresponds to the unique list of 39 fixed

points with integer coordinates in six-dimensional space of lattice metrics.

Matrices are presented by the introduced dual symbol, which sheds some light

on the lattice and its symmetry-related properties, without further digging into

matrices. By the orthogonal lattice distortion the lattice group–subgroup

relations are easily predicted. It was proven and exemplified that new symbols

enable classification of lattice groups on an absolute basis, without metric

considerations. In contrast to long established but sophisticated methods for

assessing the metric symmetry of a lattice, simple filtering of the symmetry

operations from the predefined set is proposed. It is concluded that the space of

symmetry matrices with elements from {0, �1} is the natural environment of

lattice symmetries related to the reduced cells and that complete geometric

characterization of matrices in the arithmetic holohedry provides a useful tool

for solving practical lattice-related problems, especially in the context of lattice

deformation.

1. Introduction

The 14 Bravais types of three-dimensional lattices based

both on the geometric holohedry (seven crystal systems) and

the centring mode can be distinguished by the topological,

metrical or symmetry properties of the lattices. The approach

presented here originates from the fact that small variations in

input lattice dimensions may lead, under special circum-

stances, to a discontinous change in referring the lattice

descriptions to the privileged primitive bases. In the symmetry

approach, a lattice type is defined as the class of all primitive

lattices whose lattice groups (arithmetic holohedries) are

conjugated within the ‘global symmetry group’ GL(3, Z), the

infinite group of invertible 3� 3 matrices with integral entries.

Collecting the symmetry matrices with elements from {0, �1}

into one set and changing the abstract form of the symmetry

operation into a complete geometric description is a profitable

task since it provides a conceptual and practical framework for

easier study of the ‘arithmetic symmetry’ of deformable

crystals, i.e. the derivation of a lattice group, its classification,

analysis of the group–subgroup context, selecting centred

conventional cell etc.

Determination of matrices relating any primitive cell of the

lattice to itself is not an algorithmic process and consists of

searching potential solutions to see whether they represent the

isometric transformation for a given lattice metric.1 The

1 Finding the arithmetic holohedry is similar to the solution of diophanthine
systems (Le Page, 2002). For instance, the Pitagoras (integer) numbers which
satisfy the equation a2 þ b2 ¼ c2 cannot be obtained algorithmically.



practical procedures of lattice group derivation [by B matrices

in Santoro & Mighell (1970), Mighellet al. (1981) and Himes &

Mighell (1987) or by space distribution of twofold operations

in the geometric approach (Le Page, 1982)] are in fact tests of

some matrices from GL(3, Z). The number of possible lattice

bases and thus the arithmetic holohedries is infinite, but

privileged bases in crystallography significantly reduce the

variety of symmetry matrices and generally limit their

elements to values of 0, �1. The Buerger cell is defined as that

based upon the three shortest non-coplanar translations of the

lattice (Buerger, 1957). In a number of cases further restrictive

rules have to be applied for a unique choice – the Niggli cell

(Niggli, 1928). The three shortest vectors in the Delaunay

reduction |a|2 + |b|2 + |c|2 + |a + b + c|2 = min lead to the

Delaunay cell. Recently, Lebedev et al. (2006) introduced the

idea of combinatorial generation of all 3 � 3 matrices with

elements in {�1, 0, 1}, finite order with respect to the matrix

multiplication and with the determinant equal to 1. They

claimed that the resulting set of 504 matrices covers all

possible isometries of the Buerger or Niggli reduced cells. A

similar, but reduced in number, set of 480 elements was

constructed by Zwart et al. (2006) to find all the possible

orientations of dyads in Buerger-restricted cells. Despite

rather intuitive arguments, both applications gave useful

ranges for algebraic or geometric descriptions of arithmetic

holohedries in the reduced cells. The finiteness of the

symmetry operation set also implies limits on the number of

maximal groups and their fixed sets, where the latter term

means all lattices described in the six-dimensional space

C+(Q3)2 of lattice metrics and which are compatible with a

given lattice group [see Pitteri & Zanzotto (1996) for an

introduction to these ideas].

Generally, the conjugacy between lattice groups cannot be

found in the set of symmetry operations (it does not contain

shear operations) and a geometric criterion is needed for

arithmetic holohedry classification. The following remark is

essential regarding this point. While the classical operation

symbol (Fischer & Koch, 1983) was designed for the symmetry

matrices related to Bravais-centred cells and it contains

information limited to one direction (u for rotations and

rotoinversions or h for reflections; Stróż, 2007), in the primi-

tive cells the scalar product u � h explicitly gives information

on lattice centring in the u direction (Le

Page, 1982) and thus both directions are

needed for determination of a lattice

group type.

In this paper the space V of 480

symmetry matrices with elements 0, �1

is proposed as an ‘analogue to some

extent’ of GL(3, Z) in considerations

involving the symmetry of reduced

lattices. A simple lattice metric filter

over V may be used as a practical

method for totally branching free determinations of arithmetic

holohedries. The central focus of the method described herein

is on the application of geometric information extracted from

the matrices rather than on using the matrices themselves. The

geometric data contained in a new symbol are based on the

concept of lattice orthogonal splitting caused by a symmetry

operation (see, for example, Fuksa & Engel, 1994), which

takes into account both invariant directions u and h, and

corresponds to complete specification of the symmetry matrix

eigenvectors. Based on dual symbols one can predict which

symmetry matrices in V are not compatible with the Buerger-

reduced bases, classify lattice groups without conjugacy tests

in the infinite GL(3, Z) or construct the transformation from

the primitive to the Bravais cell and in consequence assign the

cell type to any lattice group in V. The pairs of mutually

reciprocal lattice bases in which holohedries are maximal

groups and exhaust symmetry matrices in V were determined.

At least one cell in each pair is based on the shortest lattice

vectors. This defines the criterion for a given metric tensor to

represent a lattice whose holohedry comprises V. The lattice

group–subgroup relations can be analyzed by orthogonal

lattice distortion. Examples included in the text show that the

space V with well defined internal structure can be effectively

used to solve practical lattice-related problems.

2. The reduced lattice holohedries and space V of
matrices with elements 0, �1

It is well known that conventional space-group descriptions in

International Tables for Crystallography, Vol. A (ITA), are

based on Bravais cells and geometric holohedries. Thus, the W

set of all point operations is limited to 64 matrices, compiled

and characterized by geometric symbols in the 1983 edition of

ITA (Tables 11.2 and 11.3). The 48 orthogonal matrices

covered by m3m transform basis vectors into basis vectors and

the same is done by 16 additional matrices covered by 6/mmm,

if �(a + b) is also considered as a basis vector.

In the case of any primitive lattice descriptions and arith-

metic holohedries, symmetry operations transform the basis

vector into any lattice vector so the U set of all the potential

symmetry matrices is infinite. This implies many problems with

practical considerations based on the lattice symmetry

referred to a primitive description.

The concept of emphasizing reduced-lattice holohedries, i.e.

symmetry lattice descriptions by symmetry matrices with

elements 0, �1, as a special case of the arithmetic holohedries
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Table 1
Hierarchical subsets of matrices with cyclic consecutive powers (symmetry matrices): GLð3;ZÞ � U
� V � W.

Matrices
Maximal
groups Matrix elements

Mapped basis
vectors Cell kind Holohedry

U 1 1 Integer Lattice vectors Any primitive cell Arithmetric
V 960† 39 0, �1 (3–7)‡ Cell vectors (Reduced) Buerger cell Arithmetric
W 64 2 0, �1 (3, 4)‡ Basis vectors§ (Centred) Bravais cell Geometric

† In applications only 480 matrices with det = 1 are needed. ‡ Number of non-zero elements. § In the hexagonal
system �(a + b) is treated as the fourth basis vector.

2 Following the notation of Michel (1995), the space of all symmetric 3 � 3
positive-definite matrices is denoted by C+(Q3). The lattice metric tensors M
belong to this space. This guarantees that for any vector x 6¼ 0, xTMx > 0.



(Table 1), originates from the practical advances of such an

approach (the finite number of symmetry matrices) and

natural interpretation of the ‘reduced’ matrices. Matrices with

elements 0,�1 transform basis vectors into cell vectors, i.e. the

cell edges, face or body diagonals, and are intuitively assigned

to lattice descriptions based on the shortest lattice translations

(Buerger-reduced cells). V proves useful in the analysis based

on arithmetic holohedries, especially if all the maximal groups

and their ‘fixed sets’ will be determined.

Space V can be dynamically obtained by:

(i) filtering of all combinations of �1, 0, 1 in a 3 � 3 array v

[restrictions: 3� number of non-zero elements� 7, det(v) = 1,

elements of vn
2 {�1, 0, 1} for n < 6],

(ii) selecting a few generators and duplicating them by

raising to the power n (n < 6), transposing and transforming by

the orthogonal transformations.

Both approaches are not very effective, but once generated

matrices are easily replaceable by single natural numbers

(Appendix A), stored, retrieved and decoded on demand.

3. Maximal groups

It is clear that maximal groups are holohedries of the highest-

symmetry lattices, but in contrast to the subset W already

mentioned, the holohedries in V should form complete

(orthogonal) conjugacy classes and be paired by transposition

if different. The groups distinguished by transposition relate to

pseudo-inverse lattices (Grimmer, 2003): (cF, cI) or (hP with

120	, hP with 60	), while the holohedry of cP is single. In the

cF lattice there are two Buerger cells (Gruber, 1973). Ortho-

gonal transformation leads to one lattice setting of cP, three of

hP (if 120	 is demanded), four and 12 variants of the corre-

sponding two Buerger cells in cF. Together with pseudo-

reciprocal lattice settings this gives 39 maximal groups in V,

denoted by the corresponding metric tensor and symbolized

by the indexed lattice symbols (Table 2). Each matrix v 2 V

occurs at least in one of these maximal groups, so V is covered

by the enumerated holohedries. The list obtained is also

minimal, since each group contains some matrices occurring

exclusively in it.

Lemma 1. The combinatorial space V

of matrices with cyclic consecutive

powers and elements from {0, �1} is

covered by its 39 maximal groups (six

orthogonal conjugacy classes), also

represented as unique points with the

smallest integer coordinates in the

six-dimensional space C+(Q3) of

lattice metrics.

Some comments on the compiled

data seem to be interesting:

(i) The contents of Table 2 are

unique up to the numbering of the

settings.

(ii) The symmetry of cP1 and

hP1 lattices covers all point opera-

tions in the conventional space-group descriptions (e.g. in

ITA).

(iii) The elements in V can be grouped into complete

orthogonal conjugacy classes.

(iv) The maximal groups in V also form full conjugacy

classes: cP1, hP1–hP6, cF1–cF4, cF5–cF16, cI1–cI4, cI5–cI16.

(v) Since the cI lattice is characterized by a single Buerger

cell (Gruber, 1973), some cI settings (cI5–cI16, in bold)

represent the non-Buerger cell.

Matrices in V, which only occur in the holohedries of these

settings, are not consistent with the symmetry of any Buerger-

reduced cell. These matrices correspond to threefold opera-

tions along axes orthogonal to {123} or {112} planes. It is easy

to prove by a geometric construction (Appendix B) that they

need non-Buerger lattice descriptions.

The above consideration and maximality of compiled

holohedries leads to the following lemma:

Lemma 2 (criterion for the description of a lattice symmetry in

V). A lattice referred to its three shortest non-coplanar

translations or a lattice which in reciprocal space is defined by

the three shortest non-coplanar vectors has symmetry

matrices that belong to V. The subset V0, without matrices

representing threefold operations along axes orthogonal to

{123} or {112}, covers the symmetry operations of any lattice

related to the Buerger-reduced cell in a given space.

4. Geometric interpretation of matrices

It is well known (see, for example, Fuksa & Engel, 1994) that

any proper rotation (excluding the identity operation) or its

cyclic group orthogonally splits the lattice3 into one-dimen-

sional and two-dimensional sublattices given by the lattice row

[uvw] and the lattice plane (hkl).

The sum
Pn

i¼1 vi of the cyclic group elements generated by v

2 V, det(v) = 1, vn = I (identity operation) can be presented by

the matrix form
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Table 2
Reduced-form tensors of the highest-symmetry primitive cells whose holohedries are maximal groups
in V.

Tensors are scaled to the minimal integer values. Settings of the same lattice are distinguished by the
sequence number added to the lattice symbol. Tensors of non-Buerger cells are given in bold.

Direct space Reciprocal space Direct space Reciprocal space

Lattice Reduced form Lattice Reduced form Lattice Reduced form Lattice Reduced form

cP1 1, 1, 1, 0, 0, 0 cF7 2, 2, 2, 0, �1, �1 cI7 4, 3, 3, 1, 2, 2
hP1 2, 2, 1, 0, 0, �1 hP4 2, 2, 1, 0, 0, 1 cF8 2, 2, 2, 1, 1, 0 cI8 3, 3, 4, �2, �2, 1
hP2 2, 1, 2, 0, �1, 0 hP5 2, 1, 2, 0, 1, 0 cF9 2, 2, 2, 1, 0, 1 cI9 3, 4, 3, �2, 1, �2
hP3 1, 2, 2, �1, 0, 0 hP6 1, 2, 2, 1, 0, 0 cF10 2, 2, 2, 0, 1, 1 cI10 4, 3, 3, 1, �2, �2
cF1 2, 2, 2, 1, 1, 1 cI1 3, 3, 3, �1, �1, �1 cF11 2, 2, 2, 1, �1, 0 cI11 3, 3, 4, �2, 2, �1
cF2 2, 2, 2, �1, �1, 1 cI2 3, 3, 3, 1, 1, �1 cF12 2, 2, 2, 1, 0, �1 cI12 3, 4, 3, �2, �1, 2
cF3 2, 2, 2, �1, 1, �1 cI3 3, 3, 3, 1, �1, 1 cF13 2, 2, 2, 0, 1, �1 cI13 4, 3, 3, �1, �2, 2
cF4 2, 2, 2, 1, �1, �1 cI4 3, 3, 3, �1, 1, 1 cF14 2, 2, 2, �1, 1, 0 cI14 3, 3, 4, 2, �2, �1
cF5 2, 2, 2, �1, �1, 0 cI5 3, 3, 4, 2, 2, 1 cF15 2, 2, 2, �1, 0, 1 cI15 3, 4, 3, 2, �1, �2
cF6 2, 2, 2, �1, 0, �1 cI6 3, 4, 3, 2, 1, 2 cF16 2, 2, 2, 0, �1, 1 cI16 4, 3, 3, �1, 2, �2

3 As was kindly commented by the referee, this property was discovered by
Euler in 1775.



n

uhþ vkþ wl

u

v

w

0
@

1
A � hklð Þ; ð1Þ

or equivalently given by the expression

n½uvw
ðhklÞ; ð2Þ

since information contained in the denominator in equation

(1) is redundant.

Equation (2) has an interesting geometric interpretation

(Fig. 1). The first triplet in square brackets [uvw] characterizes

the row of invariant lattice points (direction u in direct space)

and the second triplet in round brackets (hkl) defines the

normal (direction h in the reciprocal space) to the ‘invariant as

a whole’ lattice planes under n-fold rotation. The coprime

indices written side by side as [uvw](hkl) are considered here

as (lattice orthogonal) splitting indices of the symmetry

operation v and its cyclic group. The directions in splitting

indices are unique up to a sign.

The convention for sign selection cannot be based on one

direction only, since the triplets [uvw] and (hkl) replace each

other if the symmetry of reciprocal lattice is considered. This

problem can be overcome by the following procedure:

(i) from the [uvw], (hkl) pair select the one with indices

0, �1 and the greater number of zeros,

(ii) if the chosen triplet does not describe the positive

direction (Stróż, 2007, convention C2), change the signs in the

two sets of indices.

If the sign of rotation is of interest it can be derived by stan-

dard methods (e.g. Fischer & Koch, 1983) and included in

expression (2) between the axis symbol and the splitting

indices, forming the dual operation symbol, the complete

geometric description of a point operation v.

The dual symbols integrate information contained sepa-

rately in two classical symbols of a symmetry matrix and its

transposition and thus bring to light more lattice properties:

(i) Centring of a lattice in the axis direction u. If uh = 2 or 3

then the axis encounters the lattice points on every second or

third plane of the family planes h.

(ii) Matrices v and (vT)�1 describe the same symmetry

operation as those considered in pseudo-inversion lattices.

This is reflected in dual symbols, e.g. 4þ½111
ð011Þ and

4�½011
ð111Þ, deeply hidden in coordinate triplet notation

y; xþ yþ z; x and y� z; xþ y; y, and lost in standard

symbols 4� x; x; x and 4� 0; y; y.

(iii) In the case of twofold rotation, the symmetry matrix

can be reconstructed from the symbol

v ¼ 2=ðu � hÞ �
uh uk ul

vh vk vl

wh wk wl

0
@

1
A� 1 0 0

0 1 0

0 0 1

0
@

1
A: ð3Þ

(iv) If g�1v1g = v2, i.e. the symmetry matrix v1 is conjugated

to v2 by an element g 2 GL(3, Z), then the corresponding

splitting indices are similarly related,

g�1
½u1v1w1
 ðh1k1l1Þ g ¼ ½u2v2w2
 ðh2k2l2Þ; ð4Þ

where direct row indices [u1v1w1] are treated as the column

matrix.

(v) Two symmetry axes of the lattice are orthogonal if

½u1v1w1
 ðh2k2l2Þ ¼ ½u2v2w2
 ðh1k1l1Þ ¼ 0: ð5Þ

(vi) Orthogonal distortion of a lattice along a given

symmetry axis. The symmetry matrix v represented by the

geometric symbol [uvw](hkl) is retained in the lattice group if

the reduced lattice tensor M = (aa, bb, cc, bc, ca, ab) is

modified according to the equation

M0 ¼ M þ "ðhh; kk; ll; kl; hl; hkÞ; ð6Þ

where " is a distortion parameter.

Each symbol points to one matrix from V and thus can

represent it. The two non-orthogonal symmetry matrices only

share the dual symbol in the [uvw] = (hkl) case. It should be

clear from the properties (i) to (vi) that dual symbols can be

applied for easier classification of arithmetic holohedries,

simpler derivation of the transformation matrix to the Bravais

description or to predict symmetry changes caused by the

orthogonal lattice distortion.

5. Lattice classification and Bravais cell derivation

The crystal system is known from the group order by

determining the holohedry. Thus, the only remaining problem

is to determine the lattice centring type (P, I, F, A, B, C)

corresponding to transformation T from the current primitive

base (a, b, c) to the centred base (a, b, c)T = (a0, b0, c0),

where

T ¼

u1 u2 u3

v1 v2 v3

w1 w2 w3

0
@

1
A ð7Þ

is defined by indices of three mutually orthogonal symmetry

axes. The lattice centring type depends on the ‘centring

properties’: the number of centred directions in equation (7)

and the multiplicity m = det(T) of the resulting cell.
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Figure 1
Geometric information contained in a splitting index [uvw](hkl). The
symbol [001](102) means that the symmetry axis is parallel to c and
orthogonal to the planes (102). The basis vectors a, b, c end on lattice
points on the 0, 1, 2 level of the (102) family planes. In this case the lattice
is b-centred.



Four systems with centred lattice types must be analyzed:

(a) Cubic system: Matrix T is composed of three fourfold

axis directions, m = 4 corresponds to the cF type and m = 2

points to the cI type.

(b) Tetragonal system: Columns of T are defined by the

directions of one fourfold axis and two mutually perpendicular

twofold axes. From two these systems, that with m = 2 is

preferred.

(c) Orthorhombic system: Matrix T is composed of three

twofold axis directions, m = 4 indicates the oF type. If m = 2

there are two possible centring types recognized by centring

properties (i) of the axes considered. The lack of centring in

one direction corresponds to C-centring, in the opposite case

there is I-centring.

(d) Monoclinic system: The scalar products uh of the unique

twofold axis allow the distinction between primitive and

centred lattice types.

The above considerations, summarized in Table 3, allow one

to propose a convenient criterion for practical classification of

Bravais lattices.

Lemma 3 (lattice classification). A (Bravais) lattice type is

defined as the class of all lattices referred to its three shortest

non-coplanar lattice translations whose arithmetic holohedries

are of the same order and have the same centring properties.

Example 1. Let a Buerger-reduced cell be given by the para-

meters: a = b = 1.3, c = 1.358 Å, � = � = 118.59, � = 90	.

Filtering of V0 gives 16 matrices consistent with the metric

tensor

M ¼

a2 ab cos � ca cos�

ab cos � b2 bc cos �

ca cos � bc cos � c2

0
B@

1
CA

¼

1:69 0 �0:845

0 1:69 �0:845

�0:845 �0:845 1:845

0
B@

1
CA: ð8Þ

The dual symbols of the symmetry matrices with positive

determinants are given in Table 4.

Matrices v2, v4, v6 and v8 define the fourfold axis. According

to property (v) twofold axes given by v1 and v7 are orthogonal.

The same is true for the axes given by v3 and v5. Thus, there

are two transformation matrices

T1 ¼

 
1 0 1

0 1 1

0 0 2

!
or T2 ¼

 
1 1 1

1 1 1

0 0 2

!
; ð9Þ

with det(T1) = 2 and det(T2) = 4. In the tetragonal system

F-centring is equivalent to I-centring, but conventionally the

smaller one is selected. Thus, the Bravais cell is given by the

tensor

TT
1 MT1 ¼

 
1:69 0 0

0 1:69 0

0 0 4

!
; ð10Þ

or by parameters a = b = 1.13, c = 2 Å, � = � = � = 90	. The

centring vector (1
2,

1
2,

1
2) results from the multiplication of (T1)�1

and integer vectors, e.g. (1, 1, 1).

In sharp contrast to the conjugacy tests of lattice holohe-

dries in the group theory (special comparison of two or more

holohedries), the type of lattice can be deduced from a single

holohedry (absolute manner) and the Bravais cell can be

selected from any lattice description. The procedure based on

the developed lemmas and illustrated by the above example

can be outlined as follows:

(a) Buerger reduction to the cell described by the metric

tensor M.

(b) Filtering V 0: H = (vi | vi
TM vi = M), vi 2 V 0 and

presenting holohedry by dual symbols.

(c) Composing the transformation matrix T and calculation

TTMT.

The selection of Bravais cells for orthogonal systems is

automatic; the case of the monoclinic system needs further

clarification.
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Table 4
Lattice symmetry related to the primitive cell a = b = 1.3, c = 1.358 Å, � =
� = 118.59, � = 90	 given by dual symbols.

Matrices are printed only for clarity.

v1 ¼

 
1 0 0

0 1 1

0 0 1

!

2 ½010
ð021Þ

v2 ¼

 
1 0 1

0 1 1

0 0 1

!

2½112
ð001Þ

v3 ¼

 
0 1 0

1 0 0

0 0 1

!

2½110
ð110Þ

v4 ¼

 
0 1 1

1 0 0

0 0 1

!

4þ½112
ð001Þ

v5 ¼

 
0 1 1

1 0 1

0 0 1

!

2½110
ð111Þ

v6 ¼

 
0 1 0

1 0 1

0 0 1

!

4�½112
ð001Þ

v7 ¼

 
1 0 1

0 1 0

0 0 1

!

2½100
ð201Þ

v8 ¼

 
1 0 0

0 1 0

0 0 1

!

1½
ðÞ

Table 3
Classification of lattice groups in V.

The crystal system is recognized by the holohedry order. The centring
properties (the number of centred directions cd and the multiplicity m of the
cell based on three mutually orthogonal symmetry axes) determine the
Bravais cell (lattice type).

Holohedry
order |H| Centring properties (cd, m) and cell type

48 (0, 1) cP, (3, 2) cI, (3, 4) cF
16 (0, 1) tP, (3, 2) tI

8 (0, 1) oP, (2, 2) oC, (3, 2) oI, (3, 4) oF
4 (0†) mP, (1†) mC or mI

24 hP
12 hR

2 aP

† Centring property along unique twofold axis.



6. Analysis of lattice group–subgroup relations by
breaking symmetry

The number of maximal groups in V is limited. This is a good

reason to analyze group–subgroup relations by ‘distortion

paths’ originated in the lattice tensors given in Table 2. From

equation (10) the distortion orthogonal or parallel to a given

symmetry axis is easily constructed. The symmetry operation

n[uvw](hkl) is retained in the holohedry of the lattice with the

metric tensor modified by �M = �(hh, kk, ll, kl, hl, hk).

Distortion is equivalent to changing the interplanar distance

d(hkl). Deformations corresponding to �d(h0k0l0) retain the

orthogonality property [but can break symmetry on planes

(hkl) and change the type of symmetry axis] assuming that the

scalar product [uvw](h0k0l0) = 0.

Example 2. We are interested in distortion paths leading to the

symmetry operation 2[001](012) or to mC lattice holohedry

containing this operation. Only hP6, cF9 and cF12 metrics

from Table 2 comply with the requirements (012) || M � [001].

The given operation is retained in corresponding groups after

successive modification of the interplanar distances d(012) and

d(110). This destroys other orthogonalities, but not [001](012).

Thus, in all three cases the distortion �d(012) + �d(110) = �(0, 1,

4, 2, 0, 0) + �(1, 1, 0, 0, 0, 1) leads to the centred monoclinic

lattices hP6:! (1.07, 2.12, 2.2, 1.1, 0, 0.07), cF9:! (2.07, 2.12,

2.2, 1.1, 0, 1.07), cF12: ! (2.07, 2.12, 2.2, 1.1, 0, �0.93)

assuming � = 0.05 and � = 0.07. The holohedries of the

resulting lattices contain the 2[001](012) operation.

Breaking symmetry in all the highest-symmetry lattices

given by 39 metric tensors leads to the diagram shown in

Fig. 2. Three branches on the distortion paths distinguished by

small circles corresponding to the Bravais connection (Pitteri

& Zanzotto, 1996) relate two inequivalent lattices by infini-

tesimal deformation without symmetry lowering. One bifur-

cation point corresponds to a tetragonal primitive lattice

(Table 5).

Owing to property (v) of the dual symbol it is easy to

recognize two systems of mutually orthogonal symmetry axes

in the lattice group tP. These systems differ by centring

properties. Distortion along the twofold axis from the first

system (�dð001Þ or �dð100Þ) destroys the twofold axes in centred

directions, reduces the fourfold axis and leads to the oP lattice

while analogous distortion (�d
ð101Þ or �dð101Þ) along the axis in

the non-centred direction gives the oB lattice. By varying the

parameters � and � from zero to some finite values four

Bravais connections between oP and oB may be defined. A

similar analysis can be performed for the two remaining

bifurcation points. The above result is well known from the

work of Pitteri & Zanzotto, but in contrast to a more

sophisticated analysis of fixed sets in six-dimensional space

C+(Q3), the present approach based on dual symbols of

symmetry operations is simple and more intuitive. The Bravais

connections between inequivalent lattices are consequences of

subgroups in the lattice holohedry, which correspond to the

same crystal system but differ in centring properties.

7. Symmetry matrices of Delaunay reduced cells

Since the Niggli cells are also Buerger cells with additional

conditions, it is clear that only some subset of V 0 is necessary

to cover all their holohedries. However, in the Delaunay

reduction this does not need to be a rule. The following

procedure was used to find such matrices based on the special

forms of the Selling tetrahedron (Table 9.1.8.1 in the 2005

edition of ITA; Burzlaff & Zimmermann, 2005). First, the

parameters of the primitive cells are generated such that a, b, c

� |a + b + c| and all the requirements of a given special form

are fullfiled. Next, the symmetry matrices and their dual

symbols of the holohedries are determined by filtering the V

file. In most cases, as in all Delaunay cells with centred

monoclinic symmetry, the relation M � [uvw] = (hkl) points to

the maximal group cF5. According to the consideration in x6 it

was easy to define the deformation path from the Delaunay

cell with maximal symmetry (cP1, cI1, cF5, hP1) to a given

Delaunay cell. However, in four cases (Table 6) not all

symmetry matrices can be found in V. This problem can be

overcome if 16 additional matrices are appended to the file.

These matrices describe fourfold symmetry axes in the cubic

primitive lattice referred to the bases given by the reduced

metric tensors (1, 2, 1, �1, 0, 0) and (1, 1, 2, 0, 0, �1), and

designed as cP2 and cP3 accordingly. They are not compatible

with Buerger reduced cells, even if in eight cases the matrices

have elements restricted to values of (�1, 0, 1). Moreover, the
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Figure 2
Breaking symmetry of lattices deformed orthogonally along directions
parallel to fourfold (dotted lines), threefold (broken lines) and twofold
(solid lines) axes. Every lattice deformed along the direction inclined to
all the symmetry axes represents a triclinic system (not shown on the
diagram).

Table 5
Exemplary holohedry of tP lattice (cP1 lattice distorted by �d(010)) with
two systems of mutually orthogonal symmetry axes.

Dual symbol Centring
Axis
system Dual symbol Centring

Axis
system

2½001
ð001Þ No 1 4þ½010
ð010Þ No 1, 2
2½100
ð100Þ No 1 2½010
ð010Þ No 1, 2
2½�1101
ð�1101Þ Yes 2 4�½010
ð010Þ No 1, 2
2½101
ð101Þ Yes 2 1 []() – –



relation between matrices and their dual symbols cease being

unique.

Thus, holohedries of Delaunay cells are covered by the set

of 104 symmetry matrices occurring in lattice descriptions cP1,

cP2, cP3, cI1, cF5, hP1.

8. Discussion

While the set of symmetry matrices that cover geometric

holohedries of lattices referred to conventional bases is well

characterized, no systematic attempts were made to define

such sets for privileged primitive bases. The collection of

matrices related to Buerger-reduced or Niggli-reduced bases

was roughly limited by a combinatorial set of matrices with

elements 0, �1, determinant 1 and finite consecutive powers

(Lebedev et al., 2006; Zwart et al., 2006). The presented work

proves that the mentioned set, named ‘V space’, plays a

fundamental role in analysis based on the arithmetic holohe-

dries of reduced lattices. In the analysed context, the term

‘reduced’ is understood as ‘related to a base, in which all

symmetry matrices satisfy the condition: v 2 V 0. In this sense

all Buerger and Niggli cells, most Delaunay cells (with the

exception of four cases) and also some non-Buerger cells are

arithmetically reduced. Some properties of V seem to be

interesting and useful: the set is covered by 39 maximal groups

which are holohedries of cP, cF, cI and hP lattices uniquely

represented by metric tensors with smaller integers, and is

closed relative to powering, negating, transposing and ortho-

gonal transformation of all the elements. Matrices in V can be

easily and reversibly coded by single numbers and thus

effectively stored, compared and sorted. For symmetry

operations contained in V there is one-to-one correspondence

between the matrix form and its dual symbol. Only in the case

of [uvw] = (hkl) is the dual symbol shared between two non-

orthogonal symmetry matrices, v and (vT)�1.

It is open to doubt whether searching 384 matrices (space

V 0) to determine lattice holohedry is effective. In the matrix

approach to this problem (Santoro & Mighell, 1970; Mighell et

al., 1981; Himes & Mighell, 1987) and a highly skewed unit

cell, a computer program seeks the matrix elements in a wide

range of integers and consequently a huge number of potential

symmetry matrices must be tested. A similar situation also

takes place in the geometric approach based on searching for

the orthogonalities between a lattice row u and a lattice plane

h (Le Page, 1982). With original limitations on u and h there

are still thousands of pairs (u, h) which require the evaluation.

However, in V there are 81 twofolds and only this number of

corresponding pairs should be tested (Zwart et al., 2006).

However, remembering that in the Le Page method lattice

symmetry is obtained by additional calculations based on the

space distribution of twofolds, even in this situation simple

filtering of the matrices from V 0 should be acknowledged as

being effective.

The notion of dual symbols, or more precisely the descrip-

tion of lattice orthogonality by the pair lattice plane (uvw)/

lattice row [uvw] has a long tradition in the crystallographic

literature and practical applications. Deviation from the exact

orthogonality as twin obliquity has been introduced by Friedel

(1926) to characterize pseudosymmetries of lattices and their

relation to twinning. Identification of twofolds by generating

indices h and u (u � h = 1 or 2, obliquity less than some arbi-

trary limit for pseudo-symmetry) is the first step in the Le Page

algorithm for derivation of the conventional unit cell from the

Buerger-reduced cell. Some advances in naming symmetry

operations by the dual symbols (especially in the case of

twofolds and reflection planes) were also considered by

Zimmermann (1976).

It has been proven in this article that dual symbols of a

lattice holohedry contain similar information to its fixed set

and give an alternative framework for the analysis of

deformable lattices symmetry. They are sufficient to classify

arithmetic holohedries in V (and corresponding lattices) into

Bravais types without conjugacy tests in GL(3, Z). It can be

concluded that for many practical lattice-related problems, the

geometric information contained in symmetry matrices is

more useful than the matrices themselves. Thus, dual symbols

have not only ‘descriptive’ but also ‘methodic’ sense. Their

form is also convenient for computer manipulation.

APPENDIX A
Concise list of symmetry matrices related to reduced
lattices

According to the analogy between the solution of diophantine

systems and determination of a lattice symmetry, it is essential

to consider the limited sets of potential symmetry matrices

with elements 0, �1 related to different lattice metrical

restrictions. Hierarchical sets of matrices presented by single

natural numbers ord(v) in the ternary counting system4 are

compiled in Table 7.

APPENDIX B
A symmetry matrix whose dual symbol contains Miller
indices of type {123} or {112} cannot describe the
symmetry of a Buerger-reduced cell

Matrices in lines 27–32 of Table 7 represent threefold rotations

with dual symbols containing Miller indices of the type {123}

or {112} and occur in holohedries of cI5–cI16 lattices. They
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Table 6
Four Delaunay cells designed by Bravais symbols and components of
Selling tetrahedron whose holohedries are subgroups of cP2 and cP3.

Delaunay cell Highest-symmetry cell Deformation

cP (0, 0, 14, 14, 14, 0) cP2 –
tP (0, 0, 14, 14, 24, 0) cP2 �dð010Þ

tP (0, 0, 14, 23, 0, 23) cP3 �dð100Þ

oP (0, 0, 14, 23, 24, 0) cP2 �dð100Þ þ �dð010Þ

4 A matrix v with elements 0, � 1 is coded into the natural number ord(v) by
the expression

P3
i;j¼1 3l2�3i�jðvij þ 1Þ. The ord can be decoded into matrix v by

integer division div and the following procedure: i, j: = 3: 1: dum: = ord div 3:
v(i, j): = ord � 3dum � 1: ord: = dum: j: = j � 1: if j = 0 then (j: = 3, i: = i � 1):
if i > 0 then goto 1.



need something other than Buerger-reduced lattice descrip-

tions. This can be proved geometrically. For example, the

matrix ‘1340’ represents operation 3+ [001](123) depicted in

Fig. 3.

Proof. A threefold axis intersects levels 1 and 2 of the family

of lattice planes in threefold symmetry points (Fig. 3a). The

shortest distance from the axis to any lattice point on level 1 or

level 2 is the same. This implies that a cell translation which

ends at level 2 is longer than three (owing to threefold

symmetry) non-coplanar vectors ending in level 1 (Fig. 3b).

This is contrary to the assumption that the cell is constructed

on the three shortest translations.

Similar arguments can be applied to the symmetry matrices

with Miller indices of type {112} in their dual symbols.
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Table 7
Hierarchical sets of symmetry matrices (det = 1) and corresponding lattice restrictions.

Matrices together with their negatives cover the holohedries of: the primitive cubic cell (lines 1–3), conventional centred cells (lines 1–4, set W), Buerger cells (lines
1–26, set V 0), Buerger cells in direct or in reciprocal spaces (lines 1–32, set V).

(1) 3200, 3250, 3310, 3360, 7410, 7636, 7672, 7898
(2) 8872, 9022, 9202, 9352, 10324, 10498, 10642, 10816
(3) 11786, 11992, 12064, 12270, 16320, 16378, 16426, 16484
(4) 3117, 5225, 5547, 7817, 11867, 14133, 14459, 16563
(5) 394, 454, 457, 608, 635, 698, 1170, 1173, 1176, 1310, 1328, 1337, 1346, 1364, 1399, 1435
(6) 1792, 1891, 1894, 2039, 2066, 2138, 2321, 2398, 2444, 2471, 2498, 2638, 2641, 2644, 2801, 2884
(7) 3016, 3058, 3090, 3144, 3173, 3188, 3191, 3194, 3197, 3203, 3206, 3209, 3212, 3227, 3333, 3357
(8) 3363, 3387, 3484, 3562, 3576, 3603, 3630, 3755, 3838, 3902, 3929, 3956, 4078, 4081, 4084, 4247
(9) 4324, 4469, 4496, 4586, 4708, 4825, 4828, 5198, 5216, 5234, 5252, 5269, 5341, 5544, 5550, 5954
(10) 5981, 6026, 6226, 6268, 6271, 6658, 6664, 6668, 6708, 6838, 6908, 6940, 7011, 7014, 7015, 7061
(11) 7088, 7156, 7169, 7246, 7264, 7404, 7416, 7559, 7589, 7640, 7670, 7720, 7750, 7790, 7814, 7820
(12) 7844, 7871, 7876, 7889, 7895, 7901, 7907, 7918, 7925, 7960, 7979, 7996, 8112, 8156, 8158, 8164
(13) 8308, 8368, 8402, 8454, 8455, 8457, 8546, 8573, 8627, 8638, 8692, 8710, 8806, 8846, 8882, 8908
(14) 8925, 8926, 8959, 9174, 9175, 9198, 9199, 9201, 9203, 9204, 9205, 9228, 9229, 9238, 9334, 9362
(15) 9380, 9445, 9459, 9460, 10228, 10288, 10316, 10352, 10399, 10431, 10432, 10614, 10615, 10638, 10639, 10641
(16) 10643, 10644, 10645, 10668, 10669, 10768, 10790, 10808, 10834, 10869, 10870, 10885, 10976, 11003, 11050, 11057
(17) 11104, 11140, 11206, 11266, 11336, 11388, 11389, 11391, 11514, 11566, 11576, 11578, 11678, 11702, 11705, 11708
(18) 11732, 11746, 11759, 11777, 11783, 11789, 11795, 11813, 11824, 11830, 11902, 11915, 11981, 11996, 12062, 12076
(19) 12142, 12258, 12282, 12407, 12434, 12515, 12520, 12592, 12628, 12688, 12722, 12790, 12825, 12828, 12829, 12964
(20) 12968, 12976, 13026, 13404, 13467, 13468, 13645, 13708, 13726, 14110, 14158, 14191, 14239, 14354, 14402, 14440
(21) 14476, 14862, 14961, 14962, 15109, 15190, 15208, 15442, 15591, 15648, 15649, 15696, 15697, 15738, 15763, 15786
(22) 15922, 16054, 16063, 16068, 16077, 16086, 16093, 16102, 16125, 16134, 16135, 16182, 16183, 16191, 16288, 16297
(23) 16306, 16311, 16329, 16336, 16345, 16354, 16368, 16369, 16377, 16379, 16386, 16387, 16416, 16417, 16425, 16427
(24) 16434, 16435, 16459, 16507, 16531, 16540, 16554, 16572, 16588, 16597, 16620, 16621, 16629, 16659, 16668, 16669
(25) 16876, 17049, 17106, 17107, 17154, 17155, 17178, 17203, 17226, 17368, 17539, 17620, 17656, 17778, 17895, 17896
(26) 18242, 18290, 18310, 18347, 18382, 18484, 18507, 18532, 18565, 18613, 18991, 19036, 19072, 19236, 19281, 19282
(27) 347, 685, 1325, 1334, 1340, 1349, 1841, 2149, 2371, 2614, 2668, 2911, 3865, 4054, 4108, 4297
(28) 4579, 4775, 5219, 5222, 5228, 5231, 6031, 6161, 6694, 6904, 7138, 7186, 7396, 7426, 7719, 7749
(29) 7808, 7811, 7823, 7826, 8128, 8404, 8608, 8656, 8765, 8836, 8958, 8985, 9299, 9370, 9417, 9444
(30) 10271, 10360, 10371, 10398, 10709, 10798, 10884, 10911, 11020, 11086, 11338, 11548, 11693, 11696, 11714, 11717
(31) 12075, 12141, 12238, 12304, 12484, 12550, 12718, 12994, 13381, 13509, 14190, 14238, 14359, 14395, 14887, 14919
(32) 15441, 15568, 15616, 15921, 16875, 17026, 17074, 17367, 17803, 17835, 18229, 18301, 18564, 18612, 19213, 19341

Figure 3
The intersections of the levels of the lattice plane family with a threefold axis. The intersection points to
(a) the hexagonal plane and (b) the stacking of such planes. The shortest lattice translation from origin O
to level 2 is longer than the shortest lattice vector to level 1.
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